Abstract
A finite time horizon inventory problem for a deteriorating item having two separate warehouses, one is a own warehouse (OW) of finite dimension and other a rented warehouse (RW), is developed with interval-valued lead-time under inflation and time value of money. Due to different preserving facilities and storage environment, inventory holding cost is considered to be different in different warehouses. The demand rate of item is increasing with time at a decreasing rate. Shortages are allowed in each cycle and backlogged them partially. Shortages may or may not be allowed in the last cycle and under this circumstance, there may be three different types of model. Here it is assumed that the replenishment cycle lengths are of equal length and the stocks of RW are transported to OW in continuous release pattern. For each model, different scenarios are depicted depending upon the re-order point for the next lot. Representing the lead-time by an interval number and using the interval arithmetic, the single objective function for profit is changed to corresponding multi-objective functions. These functions are maximized and solved by Fast and Elitist Multi-objective Genetic Algorithm (FEMGA). The models are illustrated numerically and the results are presented in tabular form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.