Abstract

The first stochastic model is based upon two urns A and B, where A contains a fixed number of white and black balls and B is empty. The player selects an integer β ≥, 2 and draws the balls one by one (with replacement) from urn A and balls of the same colour are put in urn B. The process is continued as long as the number of white balls in B exceeds (β-1) times the number of black balls in B. The player stops after drawing β(x-1) balls and is declared to be a winner if urn B has (x-1) black balls. It is shown that x has the Geeta distribution. Assuming that the mean μ is a function of two parameters θ and β it has been shown that for small changes inthe value of θ there exists a difference-differential equation which leads to the Geeta distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.