Abstract

Gas double-dynamic solid-state fermentation (SSF) is a promising strategy with the potential in transforming open-pattern fermentation into closed-pattern fermentation. This paper investigated gas double-dynamic SSF performance in cultivating Coniothyrium minitans (C. minitans), as well as its effect on physiology of C. minitans. Results showed that gas double-dynamic increased biomass content by 48.6%. High temperature impeded pycnidia formation and increased glycine production. More pycnidia formed in solid matrix at 20 °C, which was responsible for higher conidia production (1.5 (±0.03) × 1010 spores/g dry mass), indicating decisive role of high temperature in pycnidia formation of C. minitans in solid-state fermentation. Higher glycine content may be the response of high temperature stress which has close relationship with pycnidia and conidia production. Based on the findings, a two-step strategy for gas double-dynamic SSF was proposed and an satisfactory conidia production was obtained while fermentation period shortened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call