Abstract
ABSTRACTLots of semi-parametric and nonparametric models are used to fit nonlinear time series data. They include partially linear time series models, nonparametric additive models, and semi-parametric single index models. In this article, we focus on fitting time series data by partially linear additive model. Combining the orthogonal series approximation and the adaptive sparse group LASSO regularization, we select the important variables between and within the groups simultaneously. Specially, we propose a two-step algorithm to obtain the grouped sparse estimators. Numerical studies show that the proposed method outperforms LASSO method in both fitting and forecasting. An empirical analysis is used to illustrate the methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.