Abstract

Quantifying delayed directional couplings between electroencephalographic (EEG) time series requires an efficient method of causal network inference. This is especially due to the limited knowledge about the underlying dynamics of the brain activity. Recent methods based on information theoretic measures such as Transfer Entropy (TE) made significant progress on this issue by providing a model-free framework for causality detection. However, TE estimation from observed data is not a trivial task, especially when the number of variables is large which is the case in a highly complex system like human brain. Here we propose a computationally efficient procedure for TE estimation based on using sets of the Most Informative Variables that effectively contribute to resolving the uncertainty of the destination. In the first step of this method, some conditioning sets are determined through a nonlinear state space reconstruction; then in the second step, optimal estimation of TE is done based on these sets. Validation of the proposed method using synthetic data and neurophysiological signals demonstrates computational efficiency in quantifying delayed directional couplings compared with the common TE analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.