Abstract

The existing particle swarm optimization (PSO) algorithms are only effective in deconvoluting the overlapping peaks in ion mobility spectra with fewer than four component peaks, which limits the applicability of these algorithms. A high-performance two-step particle swarm optimization (TSPSO) algorithm was developed. Compared to the existing PSO algorithms, TSPSO can narrow the search ranges of all coefficients for the overlapping peaks through Gaussian model calculation, and thus can deconvolute various overlapping peaks with high accuracy, even for 30-component overlapping peaks. In addition, the TSPSO could be further applied to enhance the resolution of the spectra by narrowing the peak widths after the peak deconvolution. Simulated overlapping peaks were first used to evaluate the performance of TSPSO as compared to the dynamic inertia weight particle swarm optimization (DIWPSO) algorithm. The results showed that the profiles of the peaks deconvoluted by using TSPSO were more consistent with the original ones. The fitness values and the standard deviations of the fitness values from TSPSO were also at least an order of magnitude less than those from DIWPSO. By applying TSPSO, the overlapping peaks from both mass spectrometry (MS) and field asymmetric waveform ion mobility spectrometry (FAIMS) spectra can also be well deconvoluted. In addition, the resolutions of the MS and FAIMS spectra can be effectively enhanced after peak deconvolution. The enhanced spectra matched excellently with the experimental ones acquired at high-resolution modes. The experiment results convincingly demonstrate that the TSPSO algorithm is capable of both deconvoluting complex overlapping peaks and enhancing the spectrum resolution with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call