Abstract

Nucleation has been generally acknowledged as a rapid but uncontrollable process that is difficult to decouple from the subsequent growth phase. Here, we report our finding that nucleation of semiconductor magic-size clusters (MSCs) can be well-regulated, without a subsequent evolution in size. Colloidal semiconductor CdS MSCs were synthesized by a two-step approach intentionally designed, without the simultaneous formation of nanocrystals of other sizes. The nuclei MSCs exhibit a sharp optical absorption peaking at 311 nm and are thus denoted by MSC–311. We prepared the immediate precursor for MSC–311 denoted by IP311 which is liquid-like, through a reaction which was normally performed to grow CdS conventional quantum dots (QDs), but at a different temperature (180 °C) prior to the nucleation and growth of CdS QDs. We demonstrate that the nucleation of MSC–311 from IP311 followed first order kinetics remarkably well, and the presence of a small amount of methanol accelerated this process effectively. Mo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call