Abstract
This paper studies a fault isolation method for an optical fiber vibration source detection and early warning system. We regard the vibration sources in the system as faults and then detect and isolate the faults of the system based on a two-step neural network. Firstly, the square root B-spline expansion method is used to approximate the output probability density functions. Secondly, the nonlinear weight dynamic model is established through a dynamic neural network. Thirdly, the nonlinear filter and residual generator are constructed to estimate the weight, analyze the residual, and estimate the threshold, so as to detect, diagnose, and isolate the faults. The feasibility criterion of fault detection and isolation is given by using some linear matrix inequalities, and the stability of the estimation error system is proven according to the Lyapunov theorem. Finally, simulation experiments based on a optical fiber vibration source system are given to verify the effectiveness of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.