Abstract

A new adsorption material from fly ash (FA) was prepared by a two-step surface modification process, which showed higher ability for the removal of both inorganic and organic cationic pollutants from aqueous solution, i.e., Cu2+ and methylene blue (MB). Firstly, FA was modified by hydrothermal method in alkaline solution at 80°C (FA80) to have a larger BET surface area. Afterwards, FA80 was further modified by sodium dodecyl benzene sulfonate (SDBS), of which a layer of anionic functional groups were grafted on the surface. The adsorption performance of SDBS@FA80 for removal of Cu2+ and MB were detailedly investigated. The results showed that SDBS@FA80 presented the optimal adsorption capacity at pH 7.0. Additionally, the maximum adsorption capacities of SDBS@FA80 for the removal Cu2+ and MB were up to 227.3 and 50.76mgg-1 at 70°C, respectively, as well as being about three times higher than that of FA. When the initial concentrations of Cu2+ and MB were lower than those of 20 and 10ppm, their removal efficiencies were as high as 99.75 and 96.4%, respectively. The pseudo-second-order model was well applied to describe the adsorption kinetics, indicating that chemisorption was taking place. Furthermore, a plausible mechanism is proposed by XPS studies, where the high adsorption capacity is mainly contributed to the electrostatic attraction and π-π stacking interaction between the cationic Cu2+/MB and anionic functional groups of SDBS. Due to the low-cost and high adsorption capacity, SDBS@FA80 is regarded as a promising adsorbent for the removal of cationic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call