Abstract

We present a detailed numerical simulation study of a two-dimensional system of particles interacting via the Weeks-Chandler-Anderson potential, the repulsive part of the Lennard-Jones potential. With the reduction of density, the system shows a two-step melting: a continuous melting of solid to hexatic phase, followed by a first-order melting of hexatic to liquid. The solid-hexatic melting is consistent with the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) scenario and shows dislocation unbinding. The first-order melting of the hexatic to the liquid phase, on the other hand, displays defect-strings formed at the hexatic-liquid interfaces. We present a detailed phase diagram in the density-temperature plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call