Abstract

Owing to the additional usage of sub-bandgap photons, the intermediate-band solar cell has been regarded as a promising device design to exceed the conversion limits of conventional photovoltaic devices. An output-voltage preservation is theoretically possible in this kind of device in the case of independent quasi-Fermi levels. This phenomenon manifests experimentally in a voltage recovery induced by supplementary two-step photon absorption processes. Here, we study the excitation-power and temperature dependences of the voltage performance in an intermediate-band solar cell containing InAs quantum dots in Al0.3Ga0.7As/GaAs quantum wells. The two-color photoexcitation method is used to separately control the interband and quantum dot-conduction band transitions. The output voltage is sensitive to the balance between the two excitation densities and the cell temperature. It is found that a strongly asymmetric irradiation can even lead to a voltage decrease. The temperature-dependent data suggest a faster electron–hole annihilation at lower temperatures. We introduce a new characteristic index to qualitatively evaluate the carrier loss in the intermediate band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call