Abstract

We report the low-temperature characterizations on structural, specific heat, magnetic, and ferroelectric behaviors of transition metal oxide compound Sr3NiTa2O9. It is suggested that Sr3NiTa2O9 is a spin-1 triangular lattice Heisenberg quantum antiferromagnet which may have weak easy-axis anisotropy. At zero magnetic field, a two-step transition sequence at T(N1) = 3.35 K and T(N2) = 2.74 K, respectively, is observed, corresponding to the up-up-down (uud) spin ordering and 120° spin ordering, respectively. The two transition points shift gradually with increasing magnetic field toward the low temperature, accompanying an evolution from the 120° spin structure (phase) to the normal oblique phases. Ferroelectricity in the 120° phase is clearly identified. The first-principles calculations confirm the 120° phase as the ground state whose ferroelectricity originates mainly from the electronic polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call