Abstract

Al-7mass%Si-0.3mass%Mg alloy is widely applied to the automotive components, such as road wheel or suspension frame because of having higher ductility and corrosion resistance. Two-step aging behavior of solution treated Al-7mass%Si-0.3mass%Mg system alloy A356 cast into permanent mold and solution treated was investigated by micro-vickers hardness measurement, optical microscopy (OM) and transmission electron microscopy (TEM). The microstructure of as-cast state was consist of primary crystallized α-Al and secondary crystallized eutectic phases. Al-7mass%Si-0.3mass%Mg alloy after casting, the test specimens were heat treated for different pre-aging temperatures at 273K, 348K and 423K for various times after solution treatment at 813K for 36ks. After pre-aging treatment, the test specimens were heat treated for artificial aging at 523K for various times. The peak hardness increased almost the same value when the pre-aging temperature was 273K. On the other hands, positive effect of the final-aging was occurred after pre-aging at 348K and 423K with significantly increasing hardness in the under-aging region. The fine precipitates were observed in the specimen which was final aging at 523K after pre-aging at 348K and 423K.Such a positive effect is considered due to the influence of precipitated phase mainly such as clusters and /or G.P.zone.The present study aims to investigate the effect of pre-aged temperature on final-aged behavior in A356 system alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.