Abstract

Two new particle split and merge methods are presented for electromagnetic Particle-in-Cell codes. They are based on a statistical approach and are designed to conserve mass, momentum and energy. In addition, the correct spatial resolution of these values and the velocity distribution functions are reproduced. It is shown that charge and current densities before and after splitting and merging are in a good agreement. Furthermore, the reconstruction of the velocity distribution function is demonstrated. The new methods may lead to significantly reduced computational effort and memory consumptions which are exemplarily demonstrated by the 3D simulation of a streamer discharge formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.