Abstract

Anomalies of water have been explained by the two-state water model. In the model, water becomes one state upon supercooling. However, water crystallizes completely below 235 K ("no man's land"). The structural origin of the anomalous of the water is hidden in the "no man's land". To understand the properties of water, the spectroscopic experiment in "Norman's land" is inevitable. Hence, we proposed a new soft-confinement method for standard nuclear magnetic resonance spectroscopy to explore the "no man's land". We found the singularity temperature (215 K) at ambient pressure. Water exists in one state below 215 K. Above 215 K, the two states of water are supercritical states of the liquid-liquid critical point. The current study provides a perspective to determine the liquid-liquid critical point of water existing in a high-pressure condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.