Abstract

Past studies have shown that oxidation reactions by P450 Compound I (Cpd I) can be described by two competing quartet and doublet spin states, which possess three unpaired electrons, hence tri-radicals. One electron excitation from the delta orbital to sigma* xy generates two states that possess five unpaired electrons, so-called penta-radicals, in sextet and quartet situations, and which were shown by theory to lie only approximately 12-14 kcal/mol higher in energy than the tri-radical ground states (ref 7). The present study focuses on the C-H hydroxylation and C=C epoxidation of propene by these penta-radical states. It is shown that the initial energy differences, between the penta-radical and tri-radical states, diminish along the reaction pathway, due to the favorable and cumulative exchange stabilization of the more open-shell species. Furthermore, theory suggests that hydrogen bonding to the thiolate ligand, and general polarity of the environment, reduce these gaps further, thereby making the penta-radical states accessible to ground-state reactivity. The interconversion between the tri-radical and penta-radical states along the reaction coordinate will depend on the dynamics of spin-flips and energy barriers between the states. Especially interesting should be the region of the reaction intermediates; for both epoxidation and hydroxylation, this region is typified by a dense manifold of spin states and electromeric states (that differ by the oxidation state of iron), such that the total reactivity would be expected to reflect the interplay of these states, giving rise to multistate reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.