Abstract

Accurate saccadic and vergence eye movements towards selected visual targets are fundamental to perceive the 3-D environment. Despite this importance, shifts in eye gaze are not always perfect given that they are frequently followed by small corrective eye movements. The oculomotor system receives distinct information from various visual cues that may cause incongruity in the planning of a gaze shift. To test this idea, we analyzed eye movements in humans performing a saccade task in a 3-D setting. We show that saccades and vergence movements towards peripheral targets are guided by monocular (perceptual) cues. Approximately 200ms after the start of fixation at the perceived target, a fixational saccade corrected the eye positions to the physical target location. Our findings suggest that shifts in eye gaze occur in two phases; a large eye movement toward the perceived target location followed by a corrective saccade that directs the eyes to the physical target location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.