Abstract

Oxygen concentrations above 99.5% are required for several applications, mainly in the medical and aerospace fields. Two-stage pressure swing adsorption (PSA) processes, combining kinetic separation with equilibrium separation, have been developed for producing 99+% oxygen from air. Argon and nitrogen are kinetically removed from the air feed using a carbon molecular sieve adsorbent and the remaining nitrogen is removed using a N2/O2 selective zeolite. Despite that, two-stage processes are often unattractive, complex, and energy consuming, requiring two or more compressors/vacuum pumps. Moreover, most of the two-stage units described in literature are unable to reach the required oxygen purity of 99.5%. This work studies three energy-efficient two-stage vaccuum PSA (VPSA) processes, combining an equilibrium based PSA (EPSA) or a kinetic based PSA (KPSA) for the first stage, with a VPSA unit packed with the Ar/O2 selective zeolite AgLiLSX for the second stage, aiming to produce 99.5+% oxygen; the use of ze...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.