Abstract

Two-Stage Matching and Pricing in Ride-Hailing Platforms Matching and pricing are two critical levers in two-sided marketplaces to connect demand and supply. The platform can produce more efficient matching and pricing decisions by batching the demand requests. We initiate the study of the two-stage stochastic matching problem with or without pricing to enable the platform to make improved decisions in a batch with an eye toward the imminent future demand requests. This problem is motivated in part by applications in online marketplaces, such as ride-hailing platforms. We design online competitive algorithms for vertex-weighted (or unweighted) two-stage stochastic matching for maximizing supply efficiency and two-stage joint matching and pricing for maximizing market efficiency. Using various techniques, such as introducing convex programming–based matching and graph decompositions, submodular maximization, and factor-revealing linear programs, we obtain either optimal competitive or improved approximation algorithms compared with naïve solutions. We enrich our theoretical study by data-driven numerical simulations using DiDi’s ride-sharing data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call