Abstract

For production planning problems, cost parameters can be uncertain due to marketing activities and interest rate fluctuation. In this paper, we consider a single-item two-stage stochastic lot-sizing problem under cost parameter uncertainty. Assuming cost parameters will increase or decrease after time period p each with certain probability, we minimize the total expected cost for a finite horizon problem. We develop an extended linear programming formulation in a higher dimensional space that can provide integral solutions by showing that its constraint matrix is totally unimodular. We also project this extended formulation to a lower dimensional space and obtain a corresponding extended formulation in the lower dimensional space. Final computational experiments demonstrate that the extended formulation is more efficient and performs more stable than the two-stage stochastic mixed-integer programming formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.