Abstract
The evolution of the eastern Paleo-Asian Ocean (PAO) has controlled the formation of the southeastern Central Asian Orogenic Belt (CAOB). However, the evolution history and final closure time of the eastern PAO still remain controversial, which greatly restricts understanding of the formation process of the CAOB. To address these issues, we provide detailed zircon chronology and Hf isotope and geochemical data of Paleozoic to Triassic magmatic rocks in the southeastern CAOB. We have identified four periods of magmatism as evidenced by: Early Silurian quartz diorites (434.7 Ma), Early Devonian monzogranites (394.2 Ma), Middle Permian granites (260.2–264.5 Ma) and Late Permian-Early Triassic syenogranite (250.8–253.6 Ma). These rocks have features of low MgO and mantle-compatible elements, are enriched in Th, U, K, Pb, Sr, Zr and Hf and depleted in Nb, Ta, La, Ce, P, and Ti. The quartz diorites belong to the medium-K calc-alkaline series with εHf(t) values of −0.76 to 2.21, indicating that they may be derived from partial melting of mafic lower crust with minor contribution of mantle magma. The monzogranites and syenogranite have high Zr + Nb + Ce + Y (260–390; 261–461 ppm, respectively), total alkali contents (9.98–10.80; 8.46–9.29 wt.%, respectively), and high zircon saturation temperature (807–840; 810–885 °C). They can be classified as A-type granites. Monzogranites have εHf(t) values (between −1.20 and +3.34); hence, we believe that they were derived from the crust modified by mantle-derived fluids or melts. Syenogranite have high εHf(t) values (5.49–11.36), and we suggest that they were derived from the juvenile lower crust that originated from the depleted mantle. The granites have high Sr/Y ratios (118–257), low Y (1.42–2.82 ppm), and Yb (0.31–0.41 ppm), consistent with the features of adakite. Considering the εHf(t) isotopic values (2.99–8.50), we suggest that they originated from thickened juvenile lower crust. Combining the results from our own and previous studies, we propose a new evolution model of the eastern PAO from Paleozoic to Triassic. It can be divided into two stages: (1) Late Cambrian to Early Devonian; (2) Early Permian to Triassic. The first stage is the evolution of the Bainaimiao ocean (secondary ocean basin of the PAO), which closed in the Late Silurian and led to the Bainaimiao arc accretion to the North China Cratons. The second stage is the final closure of the eastern PAO during the Late Permian (~254 Ma).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.