Abstract
A two-stage method for the computational prediction of the structure of protein-ligand complexes is proposed. Given an experimentally determined structure of the protein, in the first stage a large number of plausible ligand conformations is generated using the fast docking algorithm FlexX. In the second stage these conformations are minimized and reranked using a method based on a classical force field. The two-stage method is tested for 10 different protein-ligand complexes. For 9 of them experimentally determined structures are known. It turns out that the two-stage method strongly improves the predictive power as compared to that of the fast docking stage alone. The tenth case is a bona fide prediction of a complex of thrombin with a new inhibitor for which no experimentally determined structure is available so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.