Abstract
In this paper we investigate the robust estimation of generalized varying coefficient models in which the unknown regression coefficients may change with different explanatory variables. Based on the B-spline series approximation and Walsh-average technique we develop an initial estimator for the unknown regression coefficient functions. By virtue of the initial estimator, the generalized varying coefficient model is reduced to a univariate nonparametric regression model. Then combining the local linear smooth and Walsh average technique we further propose a two-stage local linear Walsh-average estimator for the unknown regression coefficient functions. Under mild assumptions, we establish the large sample theory of the proposed estimators by utilizing the results of U-statistics and shows that the two-stage local linear Walsh-average estimator own an oracle property, namely the asymptotic normality of the two-stage local linear Walsh-average estimator of each coefficient function is not affected by other unknown coefficient functions. Extensive simulation studies are conducted to assess the finite sample performance, and a real example is analyzed to illustrate the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Mathematicae Applicatae Sinica, English Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.