Abstract

ABSTRACTZinc oxide is a promising semiconductor film for active devices on flexible substrates, and synthesis routes using nanoparticle inks enable greater variety of applications. We introduce and characterize a two-step transient laser annealing process to create fully densified zinc oxide films from nanoparticle ink precursors. A low temperature sub-millisecond calcining step to remove solvent and organic stabilizing ligands was followed by a high-temperature pulsed laser sintering step to form densified 50-100 nm thin films with resistivities of 10-1 to 10-3 Ω-cm. Film microstructures can be varied between crystalline and amorphous without significant film damage by adjusting the fluence of the high-temperature sintering step. These processes would be compatible with a variety of nanoparticle species, deposition methods, and patterning methods, including roll-to-roll processing paradigms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.