Abstract

To meet the demand for complex geometries and high resolutions of small-scale flow structures, a two-stage fourth-order subcell finite volume (SCFV) method combining the gas-kinetic solver (GKS) with subcell techniques for compressible flows on (unstructured) triangular meshes was developed to improve the compactness and efficiency. Compared to the fourth-order GKS-based traditional finite volume (FV) method, the proposed method realizes compactness effectively by subdividing each cell into a set of subcells or control volumes (CVs) and selecting only face-neighboring cells for high-order compact reconstruction. Because a set of CVs in a main cell share the same reconstruction, it is more efficient than traditional FV-GKS, where the solution polynomial on each CV needs to be separately reconstructed. Unlike in the single-stage third-order SCFV-GKS, both accuracy and efficiency are improved significantly by two-stage fourth-order temporal discretization, for which only a second-order gas distribution function is needed to simplify the construction of the flux function and reduce computational costs. For viscous flows, it is not necessary to compute the viscous term with GKS. Compared to the fourth-stage Runge–Kutta method, one half of the stage is saved for achieving fourth-order time accuracy, which also helps to improve the efficiency. Therefore, a new high-order method with compactness, efficiency, and robustness is proposed by combining the SCFV method with the two-stage gas-kinetic flux. Several benchmark cases were tested to demonstrate the performance of the method in compressible flow simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.