Abstract
Extreme learning machine (ELM) proposed by Huang et al. was developed for generalized single hidden layer feedforward networks (SLFNs) with a wide variety of hidden nodes. It proved to be very fast and effective especially for solving function approximation problems with a predetermined network structure. However, the method for determining the network structure of preliminary ELM may be tedious and may not lead to a parsimonious solution. In this paper, a systematic two-stage algorithm (named TS-ELM) is introduced to handle the problem. In the first stage, a forward recursive algorithm is applied to select the hidden nodes from the candidates randomly generated in each step and add them to the network until the stopping criterion achieves its minimum. The significance of each hidden node is then reviewed in the second stage and the insignificance ones are removed from the network, which drastically reduces the network complexity. The effectiveness of TS-ELM is verified by the empirical studies in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.