Abstract

Present-day radial electric power distribution circuit faces multiple challenges due to the increased photovoltaic (PV) generation. This paper aims to examine and design modern distribution circuit topologies for accommodating high PV penetration, while addressing power quality concerns. The central hypothesis of the proposed design approach is that by decreasing the Thevenin impedance at the buses where PVs are connected, the impacts on feeder voltages due to PV generation become less pronounced thereby additional PV capacity can be integrated at the corresponding buses. A novel two-stage optimization framework is proposed. The first stage is a mixed-integer linear programing based formulation to design new optimal configuration for any given distribution circuit. The formulation allows the possibility that the circuit can be operated in either a radial or loop configuration. The second stage, a nonlinear programing based formulation, then finds PV hosting capacity for the identified optimal configuration. The proposed two-stage framework is evaluated for IEEE 123-bus test feeder. It is demonstrated that the PV hosting capacity of the feeder can be increased by 53% by optimally adding two new distribution lines with tie-switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.