Abstract

The goal of this article is to describe a two-stage design that maximizes the power to detect gene-disease associations when the principal design constraint is the total cost, represented by the total number of gene evaluations rather than the total number of individuals. In the first stage, all genes of interest are evaluated on a subset of individuals. The most promising genes are then evaluated on additional subjects in the second stage. This will eliminate wastage of resources on genes unlikely to be associated with disease based on the results of the first stage. We consider the case where the genes are correlated and the case where the genes are independent. Using simulation results, it is shown that, as a general guideline when the genes are independent or when the correlation is small, utilizing 75% of the resources in stage 1 to screen all the markers and evaluating the most promising 10% of the markers with the remaining resources provides near-optimal power for a broad range of parametric configurations. This translates to screening all the markers on approximately one quarter of the required sample size in stage 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.