Abstract
This paper examines the wide-spread practice where data envelopment analysis (DEA) efficiency estimates are regressed on some environmental variables in a second-stage analysis. In the literature, only two statistical models have been proposed in which second-stage regressions are well-defined and meaningful. In the model considered by Simar and Wilson (J Prod Anal 13:49–78, 2007), truncated regression provides consistent estimation in the second stage, where as in the model proposed by Banker and Natarajan (Oper Res 56: 48–58, 2008a), ordinary least squares (OLS) provides consistent estimation. This paper examines, compares, and contrasts the very different assumptions underlying these two models, and makes clear that second-stage OLS estimation is consistent only under very peculiar and unusual assumptions on the data-generating process that limit its applicability. In addition, we show that in either case, bootstrap methods provide the only feasible means for inference in the second stage. We also comment on ad hoc specifications of second-stage regression equations that ignore the part of the data-generating process that yields data used to obtain the initial DEA estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.