Abstract
Crater detection can provide valuable information for humans to explore the topography and understand the history of extraterrestrial planets. Due to the significantly varying scenario distributions, existing detection models trained on known labelled crater datasets are hardly effective when applied to new unlabelled planets. To address this issue, we propose a two-stage adaptive network (TAN) for semi-supervised cross-domain crater detection. Our network is built on the YOLOv5 detector, where a series of strategies are employed to enhance its cross-domain generalisation ability. In the first stage, we propose an attention-based scale-adaptive fusion (ASAF) strategy to handle objects with significant scale variances. Furthermore, we propose a smoothing hard example mining (SHEM) loss function to address the issue of overfitting on hard examples. In the second stage, we propose a sort-based pseudo-labelling fine-tuning (SPF) strategy for semi-supervised learning to mitigate the distributional differences between source and target domains. For both stages, we employ weak or strong image augmentation to suit different cross-domain tasks. Experimental results on benchmark datasets demonstrate that the proposed network can enhance domain adaptation ability for crater detection under varying scenario distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.