Abstract
An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.