Abstract

In recent years, a variety of sound field control methods have been proposed for the generation of separated sound regions. Different algorithms control the physical properties of the generated sound field to different degrees. The existing methods mainly focus on sound pressure restoration and its related improvement. When the loudspeaker array is non-uniformly placed, the reconstruction system is not stable enough. To solve this problem, this paper proposes two sound field control methods related to particle velocity. The first method regulates the reconstruction error of particle velocity in the bright zone and the square of particle velocity in the dark zone; the second method regulates the reconstruction error of sound pressure and particle velocity in the bright zone and the square of sound pressure and particle velocity in the dark zone. Five channel and twenty-two channel non-uniform loudspeaker systems were used for two-dimensional and three-dimensional computer simulation testing. Experimental results show that the two proposed methods have better tradeoffs in terms of acoustic contrast, reproduction error and array effort than traditional methods, especially the second proposed method. In the two-dimensional experiment, the maximum reductions of the average array efforts generated by the proposed methods were about 10 dB and 11 dB compared with the average array efforts generated by two traditional methods. In the three-dimensional experiment, the maximum reductions of the average array efforts generated by the proposed methods were about 8 dB and 2 dB compared with the average array efforts generated by two traditional methods. The smaller the array effort, the more stable the loudspeaker system. Therefore, the reconstruction systems produced by the proposed methods are more stable than those produced by the traditional methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call