Abstract

ABSTRACT The prime Kepler mission revealed that small planets (<4 R ⊕ ?> ) are common, especially around low-mass M dwarfs. K2, the repurposed Kepler mission, continues this exploration of small planets around small stars. Here we combine K2 photometry with spectroscopy, adaptive optics imaging, and archival survey images to analyze two small planets orbiting the nearby field-age M dwarfs, K2-26 (EPIC 202083828) and K2-9. K2-26 is an M 1.0 ± 0.5 ?> dwarf at 93 ± 7 pc from K2 Campaign 0. We validate its planet with a day period of 14.5665 and estimate a radius of 2.67 − 0.42 + 0.46 R ⊕ ?> . K2-9 is an M 2.5 ± 0.5 ?> dwarf at 110 ± 12 pc from K2 Campaign 1. K2-9b was first identified by Montet et al.; here we present spectra and adaptive optics imaging of the host star and independently validate and characterize the planet. Our analyses indicate K2-9b is a 2.25 − 0.96 + 0.53 R ⊕ ?> planet with a 18.4498 day period. K2-26b exhibits a transit duration that is too long to be consistent with a circular orbit given its measured stellar radius. Thus, the long transits are likely due to the photoeccentric effect and our transit fits hint at an eccentric orbit. Both planets receive low incident flux from their host stars and have estimated equilibrium temperatures <500 K. K2-9b may receive approximately Earth-like insolation. However, its host star exhibits strong GALEX UV emission which could affect any atmosphere it harbors. K2-26b and K2-9b are representatives of a poorly studied class of small planets with cool temperatures that have radii intermediate to Earth and Neptune. Future study of these systems can provide key insight into trends in bulk composition and atmospheric properties at the transition from silicate dominated to volatile rich bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.