Abstract

We uncover the existence of several competitive mechanisms of water oxidation on the β-CoOOH (10-14) surface by going beyond the classical 4-step mechanism frequently used to study this reaction at the DFT level. Our results demonstrate the importance of two-site reactivity and of purely chemical steps with the associated activation energies. Taking the electrochemical potential explicitly into account leads to modifications of the reaction energy profiles finally leading to the proposition of a new family of mechanisms involving tetraoxidane intermediates. The two-site mechanisms revealed in this work are of key importance to rationalize and predict the impact of dopants in the design of future catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.