Abstract
Assembling and studying high-nuclearity 3d-4f metal clusters represent a pregnant and challenging research hotspot. Based on anionic template and ligand-controlled hydrolytic methods, two heterometallic metal clusters, formulated as [Gd23Ni20(DTA)20(CO3)4(CH3COO)6(SiO4)4(CH3CH2OH)2(μ3-OH)33(μ2-OH)4(H2O)16]·Cl2·30H2O and [Eu23Ni20(DTA)20(CO3)4(CH3COO)6(SiO4)4(CH3CH2OH)2(μ3-OH)33(μ2-OH)4(H2O)16]·Cl2·46H2O (abbreviated as Gd23Ni20, Eu23Ni20, H2DTA = thiodiglycolic acid), are successfully obtained, which both feature similar double-shell-shaped structures with a Ni20 building unit encapsulating a Ln23 aggregation. The structural analysis illustrates that the SiO44- anion, serving as the anionic template in this work, is reported for the second time in 3d-4f metal clusters. In terms of the magnetic properties, large amounts of Gd3+ and Ni2+ ions contribute to the MCE of compound Gd23Ni20, along with 38.15 J kg-1 K-1 at ΔH = 7.0 T for 2.0 K. It is worth mentioning that compound Gd23Ni20 exhibits an excellent magnetic entropy change at low fields (-ΔSm = 19.10 J kg-1 K-1 at 2.0 K for ΔH = 2.0 T). In addition, Gd23Ni20 exhibits preferable solvent and thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.