Abstract

The paper presents experimental results of the interaction of a focused optical beam with a suspension of CdSe/ZnS quantum dots in toluene. Two autographs characteristic only of the behavior of a superfluid quantum liquid were experimentally observed. The first was the fountain effect from the region of local heating of the suspension with an optical beam; the second was the complete “creeping out” of the QDs suspension in the form of a thin film along the walls of the cuvette in which the suspension was located. The results of the work suggest that superfluid quantum liquid may arise at room temperature as a result of the functioning of many-particle quantum superposition. Bose-Einstein condensation of entangled quantum states is proposed as a physical mechanism for producing a superfluid liquid, regardless of temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.