Abstract

Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.

Highlights

  • Climate change and species invasion are widely recognized as grievous threats to biodiversity, generating great conservation and socio-economic demands worldwide [1, 2, 3, 4, 5]

  • Our results show that the invasive potential of C. macropomum is greatly amplified when the locations of fish farms rearing the species are included in the modelling process

  • It is agreed that climate change and species invasions independently cause serious ecological damage

Read more

Summary

Introduction

Climate change and species invasion are widely recognized as grievous threats to biodiversity, generating great conservation and socio-economic demands worldwide [1, 2, 3, 4, 5]. It is crucial to understand the interactions between climate change and biological invasions, since the impacts caused are progressively increasing worldwide and generating negative changes in native communities [6, 7]. For this reason, there is a growing consensus that management decisions aimed at biodiversity conservation should be made. Freshwater environments play an important role in determining global biodiversity and providing valuable goods and services for humans [8, 9] Despite their importance, these ecosystems are subject to unprecedented levels of anthropogenic impacts, among which invasive species occupy a central position in the level of threat [10]. There is an emergent need for government policies and management actions to protect freshwater ecosystems and their species, taking into account the coupled effect of invasions and climate change

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.