Abstract

A two-sided extension of strictly locally testable languages is presented. In order to determine membership within a two-sided strictly locally testable language, the input must be scanned from both ends simultaneously, whereby it is synchronously checked that the factors read are correlated with respect to a given binary relation. The class of two-sided strictly locally testable languages is shown to be a proper subclass of the even linear languages that is incomparable to the regular languages with respect to inclusion. Furthermore, closure properties of the class of two-sided strictly locally testable languages and decision problems are studied. Finally, it is shown that two-sided strictly k-testable languages are learnable in the limit from positive data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.