Abstract

Small for gestational age (SGA)-born children comprise a heterogeneous group in which only few genetic causes have been identified. To determine copy number variations in 18 growth-related genes in 100 SGA children with persistent short stature. Copy number variations in 18 growth-related genes (SHOX, GH1, GHR, IGF1, IGF1R, IGF2, IGFBP1-6, NSD1, GRB10, STAT5B, ALS, SOCS2, and SOCS3) were determined by an "in house" multiplex ligation-dependent probe amplification kit. The deletions were further characterized by single-nucleotide polymorphism array analysis. Two heterozygous de novo insulin-like growth factor 1 receptor (IGF1R) deletions were found: a deletion of the complete IGF1R gene (15q26.3, exons 1-21), including distally flanking sequences, and a deletion comprising exons 3-21, extending further into the telomeric region. In one case, serum IGF-I was low (-2.78 sd score), probably because of a coexisting growth hormone (GH) deficiency. Both children increased their height during GH treatment (1 mg/m(2) per day). Functional studies in skin fibroblast cultures demonstrated similar levels of IGF1R autophosphorylation and a reduced activation of protein kinase B/Akt upon a challenge with IGF-I in comparison with controls. IGF1R haploinsufficiency was present in 2 of 100 short SGA children. GH therapy resulted in moderate catch-up growth in our patients. A review of the literature shows that small birth size, short stature, small head size, relatively high IGF-I levels, developmental delay, and micrognathia are the main predictors for an IGF1R deletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call