Abstract

This paper presents the design of two separate continually online trained (COT) neurocontrollers for excitation and turbine control of a turbogenerator connected to the infinite bus through a transmission line. These neurocontrollers augment/replace the conventional automatic voltage regulator and the turbine governor of a generator. A third COT artificial neural network is used to identify the complex nonlinear dynamics of the power system. Results are presented to show that the two COT neurocontrollers can control turbogenerators under steady-state as well as transient conditions and, thus, allow turbogenerators to operate more closely to their steady-state stability limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.