Abstract

Abstract A result from a standard linear model course is that the variance of the ordinary least squares (OLS) coefficient of a variable will never decrease when including additional covariates into the regression. The variance inflation factor (VIF) measures the increase of the variance. Another result from a standard linear model or experimental design course is that including additional covariates in a linear model of the outcome on the treatment indicator will never increase the variance of the OLS coefficient of the treatment at least asymptotically. This technique is called the analysis of covariance (ANCOVA), which is often used to improve the efficiency of treatment effect estimation. So we have two paradoxical results: adding covariates never decreases the variance in the first result but never increases the variance in the second result. In fact, these two results are derived under different assumptions. More precisely, the VIF result conditions on the treatment indicators but the ANCOVA result averages over them. Comparing the estimators with and without adjusting for additional covariates in a completely randomized experiment, I show that the former has smaller variance averaging over the treatment indicators, and the latter has smaller variance at the cost of a larger bias conditioning on the treatment indicators. Therefore, there is no real paradox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.