Abstract

Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.