Abstract
Many real data analyses involve two-sample comparisons in location or in distribution. Most existing methods focus on problems where observations are independently and identically distributed in each group. However, in some applications the observed data are not identically distributed but associated with some unobserved parameters which are identically distributed. To address this challenge, we propose a novel two-sample testing procedure as a combination of the -modeling density estimation introduced by Efron and the two-sample Kolmogorov-Smirnov test. We also propose efficient bootstrap algorithms to estimate the statistical significance for such tests. We demonstrate the utility of the proposed approach with two biostatistical applications: the analysis of surgical nodes data with binomial model and differential expression analysis of single-cell RNA sequencing data with zero-inflated Poisson model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.