Abstract
In this article, we propose a new test for testing the equality of two population covariance matrices in the ultra-high dimensional setting that the dimension is much larger than the sizes of both of the two samples. Our proposed methodology relies on a data splitting procedure and a comparison of a set of well selected eigenvalues of the sample covariance matrices on the split datasets. Compared to the existing methods, our methodology is adaptive in the sense that (i). it does not require specific assumption (e.g., comparable or balancing, etc.) on the sizes of two samples; (ii). it does not need quantitative or structural assumptions of the population covariance matrices; (iii). it does not need the parametric distributions or the detailed knowledge of the moments of the two populations. Theoretically, we establish the asymptotic distributions of the statistics used in our method and conduct the power analysis. We justify that our method is powerful under weak alternatives. We conduct extensive numerical simulations and show that our method significantly outperforms the existing ones both in terms of size and power. Analysis of two real datasets is also carried out to demonstrate the usefulness and superior performance of our proposed methodology. An R package UHDtst is developed for easy implementation of our proposed methodology. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.