Abstract

Tetraaryl‐21,23‐dirhodaporphyrin and a series of related monorhodaporphyrins have been obtained by tellurium‐to‐rhodium exchange in a reaction of tetraaryl‐21,23‐ditelluraporphyrin with [RhCl(CO)2]2. These organometallic metallaporphyrins contain rhodium(III) centers embedded in rhodacyclopentadiene rings, incorporated within the porphyrin frames. The skeletons of 21,23‐dirhodaporphyrin and 21‐rhoda‐23‐telluraporphyrin are strongly deformed in‐plane from the rectangular shape typical for porphyrins, due to rhodium(III) coordination preferences, the large size of the two core atoms, and the porphyrin skeleton constrains. These two metallaporphyrins exhibit fluxional behavior, as studied by 1H NMR and DFT, involving the in‐plane motion and the switch of the rhodium center(s) between two nitrogen donors. A side product detected in the reaction mixture, 21‐oxa‐23‐rhodaporphyrin, results from tellurium‐to‐oxygen exchange, occurring in parallel to the tellurium‐to‐rhodium exchange. The reaction paths and mechanisms have been analyzed. The title 21,23‐dirhodaporphyrin contains a bridged bimetallic unit, Rh2Cl2, in the center of the macrocycle, with two rhodium(III) ions lying approximately in the plane of the porphyrinoid skeleton. The geometry of the implanted Rh2Cl2 unit is affected by macrocyclic constrains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.