Abstract

Necessary and sufficient conditions for the existence of moments of the first passage time of a random walk S n into [x, ∞) for fixed x≧ 0, and the last exit time of the walk from (−∞, x], are given under the condition that S n →∞ a.s. The methods, which are quite different from those applied in the previously studied case of a positive mean for the increments of S n , are further developed to obtain the “order of magnitude” as x→∞ of the moments of the first passage and last exit times, when these are finite. A number of other conditions of interest in renewal theory are also discussed, and some results for the first time for which the random walk remains above the level x on K consecutive occasions, which has applications in option pricing, are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.