Abstract

AbstractThis article presents two constructions motivated by a conjecture of van den Dries and Miller concerning the restricted analytic field with exponentiation. The first construction provides an example of two o-minimal expansions of a real closed field that possess the same field of germs at infinity of one-variable functions and yet define different global one-variable functions. The second construction gives an example of a family of infinitely many distinct maximal polynomially bounded reducts (all this in the sense of definability) of the restricted analytic field with exponentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.