Abstract

The thyroid hormone receptor (TR) and the retinoic acid receptor (RAR) act as transcriptional repressors when they are not occupied by their cognate ligands. This repressor function is mediated by proteins called corepressors. One of the nuclear hormone receptor corepressors, N-CoR, was originally isolated as a retinoid X receptor-interacting protein called RIP13. We have isolated a new potential variant of RIP13/N-CoR that is missing previously described transcriptional repressor domains but is similar in structure to the related corepressor termed SMRT or TRAC-2. Detailed analysis of the interaction with TR and RAR demonstrates that RIP13/N-CoR contains a new receptor interaction domain, termed ID-II, in addition to the previously described domain, referred to here as ID-I. Both ID-I and ID-II are capable of interacting independently with either TR or RAR, as assessed by the yeast two-hybrid system, by a mammalian two-hybrid system, or by direct in vitro binding. Results with all three approaches confirm that RIP13/N-CoR also interacts with retinoid X receptor, but this interaction is weaker than that with TR or RAR. Together, these results demonstrate that RIP13/N-CoR can interact with several different nuclear hormone receptors via two separate receptor interaction domains. Differences between the interactions observed in the different systems suggest that corepressor function may be modified by additional factors present in various cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.