Abstract

ABSTRACTWe study a system of two non-identical and separate M/M/1/• queues with capacities (buffers) C1 < ∞ and C2 = ∞, respectively, served by a single server that alternates between the queues. The server’s switching policy is threshold-based, and, in contrast to other threshold models, is determined by the state of the queue that is not being served. That is, when neither queue is empty while the server attends Qi (i = 1, 2), the server switches to the other queue as soon as the latter reaches its threshold. When a served queue becomes empty we consider two switching scenarios: (i) Work-Conserving, and (ii) Non-Work-Conserving. We analyze the two scenarios using Matrix Geometric methods and obtain explicitly the rate matrix R, where its entries are given in terms of the roots of the determinants of two underlying matrices. Numerical examples are presented and extreme cases are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.