Abstract

In this paper, we focus on two-qubit pure state tomography. For an arbitrary unknown two-qubit pure state, separable or entangled, it has been found that the measurement probabilities of 16 projections onto the tensor products of Pauli eigenstates are enough to uniquely determine the state. Moreover, these corresponding product states are arranged into five orthonormal bases. We design five quantum circuits, which are decomposed into the common gates in universal quantum computation, to simulate the five projective measurements onto these bases. At the end of each circuit, we measure each qubit with the projective measurement {|0⟩⟨0|,|1⟩⟨1|}. Then, we consider the open problem whether three orthonormal bases are enough to distinguish all two-qubit pure states. A necessary condition is given. Suppose that there are three orthonormal bases . Denote the unitary transition matrices from to as U1 and U2. All 32 elements of matrices U1 and U2 should not be zero. If not, these three bases cannot distinguish all two-qubit pure states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.